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1 Introduction

For this lab, we modified our single-cycle MIPS processor from Lab 3 into a five-stage pipeline processor.
In a pipelined processor, the instruction cycle is broken up into stages. Each stage executes a differ-
ent part of the instruction, which allows the stages to operate concurrently. This means that multiple
instructions can be processed in parallel. The stages are instruction fetch, instruction decode, execute,
read/write data memory, and write back.

The advantages of a pipeline processor over a non-pipelined processor is that it improves through-
put as multiple instructions can be completed in a shorter amount of time. It doesn’t improve the speed
of completing just one instruction, but if there are many instructions, the completion time is much
faster than a single-cycle non-pipelined processor. The downside to pipelining are instances where the
next instruction cannot execute, called hazards. In our design, we address data hazards and control
hazards by implementing forwarding and stalling. The third type of hazard is structural hazard, when
the hardware cannot support the combination of instructions executed in the same clock cycle.

2 Processor

Since there are five stages in the single-cycle pipelined processor, this means that up to five instructions
will be executed in a single clock cycle. The datapath is thus split up into five sections with registers
between each stage. These registers are used to retain the values of an instruction in order to pass them
to the upcoming stages as that stage will then be used to execute a different instruction. The following
are the registers that were added:

• Between the fetch and decode stage

• Between the decode and execute stage

• Between the execute and memory stage

• Between the memory and writeback stage

As mentioned above, the downsides of pipelining would be the need to address potential hazards that
can occur from executing different instructions at the same time. To address these hazards, specifically
data and control hazards, we need to implement forwarding and stalling. This required additional
components, including:

• A hazard unit, which is needed to handle the data and control hazards

• A 3-to-1 MUX

• A comparator

The processor ports are shown below.

Processor Port Description
Port name Port size Port Type Description

ref clk 1 IN clock signal
reset 1 IN reset to normal state

Specfically, in our implementation of the pipelined processor, we placed each stage in its own .vhd
file. This allowed us to work on the assignment simultaneously without changing the behavior of the
pipelined processor. We also separated the forwarding unit from the hazard unit to make a distinction
between their different purposes.
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2.1 Design Schematic

Below is the design schematic for our implementation of the processor, showing the five stages, hazard
unit, and forwarding unit.
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Figure 1: Design Schematic of the Processor generated from QuestaSim.

2.2 Simulation

To simulate the processor, we created a testbench and our own test code in MIPS. The code is preloaded
into the instruction memory. It tests R-type, I-type and J-type instructions. The following operations
are supported:
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Supported Instructions
Arithmetic Shift Branch Memory

ADD SLLV BEQ LW
ADDU SRLV JUMP SW
SUB SRAV

SUBU
AND
OR

XOR
NOR
SLT

SLTU
ADDIU
ANDI
ORI

XORI
LUI
SLTI

SLTIU

2.2.1 Waveform: Using our own MIPS test code.

A separate file in the test folder called rom3.txt provides the MIPS equivalent of the binary code for
this waveform. We also have our other test files we used to verify the design, rom.txt, rom1.txt and
rom2.txt.
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3 The Pipeline Architecture

3.1 Pipelining

Pipelining is a technique that allows multiple instructions to be executed in parallel and thus improves
CPU throughput. The instruction cycle is broken up into a sequence of stages. Each stage is dependent
on the results from the previous stage. The idea behind pipelining instructions is similar to an assembly
line. Once one stage is done processing one part of an instruction, it will save the results in a register
and then begin working on another instruction. The goal is to keep each stage busy with an instruction.
In this way, the time to complete each instruction is the same as a single-cycle processor, but the time
to complete all the instructions is faster as there is concurrent processing.

In our VHDL design for the pipelined processor, each stage was placed in its own file with the cor-
responding components for that stage as well as the register between itself and the stage before it.
There are five stages total: instruction fetch, instruction decode, execute, memory access, and register
writeback. Between each of these stages is a pipeline register that is needed to isolate signals between
the different stages. All the signals that need to move from one stage to another must pass through
the pipeline registers. For example, the controller is located in the Decode stage, however, there are
signals that do not get used until the Memory stage such as the MemWrite signal. This signal has to
move through the registers between the Decode/Execute stage and the Execute/Memory stage in order
to arrive at its destination as the write enable signal to the RAM. As an instruction moves through the
stages, the registers are there to save the values and pass them on to the next stage so that the previous
stage can begin working on another instruction.

For branch instructions, we encountered an issue where we would need to insert three NOPs after
the branch instruction. Our solution was to move components from the Execute stage into the Decode
stage and also make a copy of other components. By doing so, we were able to reduce the number of
NOPs needed to one. The components that we moved were a shifter and comparator. The components
we made copies of were the two MUXs that whose outputs would go as inputs for the ALU. This allowed
us to get the result of the branch prediction earlier, so we wouldnt need to wait until after the Execute
stage to know whether to branch or not.

3.2 Forwarding

Forwarding is a hardware technique used to avoid Read After Write (RAW) data hazards and reduce
stalling. A RAW data hazard occurs when instructions use data that is dependent upon a modification
in a different stage of the pipeline.

We use the forwarding technique in the decode stage and the execution stage. The result of the com-
parator in the decode stage is forwarded to the preceding instructions memory stage or writeback stage.
The result of the ALU in the execution stage is forwarded to the preceding instructions memory or
writeback stage. If RegWrite signal is high for the memory state or writeback stage, we check if the Rs
or Rt signals from the decode and execution are equal to WriteRegM or WriteRegW signal. If one or
more of the conditions are true, then forwarding occurs for each of the corresponding stages.

3.3 Hazard Detection

As discussed above, forwarding solves some of the data dependencies between instructions. One depen-
dency that is not handled by the forwarding unit is load-use data hazard. Load-use data hazard occurs
when there is a load instruction, and the next instruction needs the data loaded from the memory. There
is nothing forwarding can do to address this, because at the time the data is needed, the data has not
even become available from the memory yet. Therefore, a one-cycle stall is needed after the load in-
struction, so that the data can become available and loaded into a register for the next instruction to use.

To detect this condition, a hazard unit needs to check the source and target addresses of an instruction
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against the destination register of the previous instruction, and it needs to know whether the previous
instruction was a load instruction or not. In our implementation, the hazard unit takes the MemtoRegE
signal, the addresses rs and rt from the decode stage, and the address rt from the execute stage. We
take source and target addresses from the decode stage to detect this condition as early as possible.
That means that the destination register will come from the execute stage. MemtoRegE tells us if the
instruction before the current instruction being decoded is a load instruction or not. If it is, and the
destination of the load matches either the source or target address of the decode stage, then there will
be a stall.

A similar condition also applies to cases where the dependent instruction is a branch instruction. Since
we moved the hardware to determine branch outcomes to the decode stage, if the branch operands use
the result of the previous instruction, there needs to be a stall, because the output of the ALU will not be
stable enough for the forwarding unit to forward to the decode stage. Also, if branch needs data loaded
in the previous instruction, there needs to be two stalls, because the required data will be available from
the memory to be forwarded only after two cycles have passed.

To address this issue, our hazard unit takes the destination addresses from the execute and memory
stages, the source and target addresses and the branch signal from the decode stage, and the MemtoReg
signal from the memory stage. We first check if the source and target addresses in the decode stage
match the destination address of any R-type or load instruction in the execute stage. If there is a match,
then we stall for one cycle. Then, we check the same source and target registers with the destination
register of the memory stage. Here, we only stall if there is a match and the instruction in the memory
stage is a load instruction.

Stalling is achieved by disabling or clearing the pipeline registers. To stall, we disable the writeback/fetch
(program counter) and fetch/decode pipeline registers, thereby preventing the processor from moving
the instructions and data already in those stages. We also clear the decode/execute pipeline register,
because that register will contain the signals we wanted to stall from the fetch/decode register, and we
dont want those signals to continue passing through the datapath. Clearing that register amounts to a
nop in the instructions.

4 Components From Previous Labs

These components have not been modified from previous labs, specifically Lab 2 and 3.

4.1 Program Counter

The program counter is a register that stores the address of the instruction being executed. The address
in the program counter is passed to the instruction memory. After the instruction is fetched, the counter
gets incremented to go to the next address. In our case, the program counter is incremented by 4 using
an adder as our design is byte-addressable. Our implementation of the program counter, takes in a clock
signal, reset, and input. It outputs a 32-bit address.

Program Counter Port Description
Port name Port size Port Type Description

clk 1 IN clock signal
rst 1 IN reset bit

input 32 IN incremented value
output 32 OUT outputs an address
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Figure 2: Program Counter Diagram

4.2 Instruction Memory

The instruction memory for our design is implemented as a ROM (read-only memory). It is preloaded
with instructions provided in the rom.dat file. The address is sent from the program counter as 32-bits,
but the instruction memory will only take the lower 9-bits. This makes our instruction memory size
29 − 1 and each line is 32-bits long. Initially, we set the size to 232 − 1. However, we encountered errors
where QuestaSim and Cadence would not allow an array size greater than 230 − 1. Since we were not
going to use that many registers, we shrunk the size.

Instruction Memory Port Description
Port name Port size Port Type Description

addr 32 IN address for the location of instruction, only takes the lower 9-bits
dataIO 32 INOUT outputs an instruction

Figure 3: The instruction memory has one 32-bit input and one 32-bit output.

4.3 Controller

The controller is one of the most important blocks in ensuring that the processor works correctly, as it
is the part of the processor that decides whether the register file or the data memory should be written
to or not. To ensure that data does not accidentally get overwritten, the controller must be very strict
in the conditions under which it allows the register file or the data memory to be written. For example,
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if the instruction is not an R-type, I-type, or load instruction, the register file’s write enable line should
be set to 0, and if the instruction is not a store instruction, the data memory’s write enable line should
be set to 0. The correct selection for the multiplexers is also important, as it could allow the incorrect
value to be written to the register file or data memory. It also determines whether to enable the write
function of the data memory and the register file, and sends the correct function code to the ALU,
based on the instruction.

Controller Port Description
Port name Port size Port Type Description

Funct 6 IN function
op 6 IN opcode

ALUControl 6 OUT goes to the ALU
ALUSrc 1 OUT goes to the ALU

MemtoReg 1 OUT memory to the register
RegWrite 1 OUT controls register to write
RegDis 1 OUT register

MemWrite 1 OUT write memory
Branch 1 OUT controls branch instruction
Jump 1 OUT controls jump instruction

Figure 4: Diagram of the controller

4.4 ALU

The ALU performs arithmetic and logic operations on two 32-bit operands and produces a 32-bit
output. It also provides a one-bit value for the branch instruction.

ALU Port Description
Port name Port size Port Type Description

Func in 6 IN opcode from controller
A in 32 IN operand A
B in 32 IN operand B

O out 32 OUT output from ALU
Branch out 1 OUT for branch instruction
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ALU Function Description
Instruction Description Function Code Comments

nop nothing ”000000”
add/addi rd ← rs + rt / rd ← rs + immediate ”100000”

addu/addiu rd ← rs + rt / rd ← rs + immediate ”100001”
sub rd ← rs - rt / rd ← rs - immediate ”100010”

subu rd ← rs - rt / rd ← rs - immediate ”100011”
and/andi rd ← rs AND rt / rd ← rs AND immediate ”100100”

or/ori rd ← rs OR rt / rd ← rs OR immediate ”100101”
xor/xori rd ← rs XOR rt / rd ← rs XOR immediate ”100110”

nor rd ← rs XOR rt / rd ← rs NOR immediate ”100111”
slt/slti Set rd if rs < rt / set rd if rs < immediate ”101000” If the condition is

satisfied set else re-
set destination

sltu/sltiu Set rd if rs < rt / set rd if rs < immediate ”101001” If the condition is
satisfied set else re-
set destination

sll B << A 000X00
srl B >> A 000X10
sra B >>> A 000X11
beq A == B 111100
nop nothing others Any other function

code does nothing

Figure 5: The ALU has 3 inputs and two outputs. There are two 32-bit inputs that act as the operands
and a 6-bit input that lets the ALU know which operation to perform. The result is then sent to the
output and a value for the branch.

4.5 Register File

The register file has 32 registers, each 32 bits wide. There are 2 read ports and one write port. The
read ports are asynchronous and the write port is synchronous. The register file has a synchronous
reset signal and a write enable signal.
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Register Port Description
Port name Port size Port Type Description

clk 1 IN clock signal
rst s 1 IN synchronous reset
we 1 IN write enable

raddr 1 5 IN read address 1
raddr 2 5 IN read address 2
waddr 5 IN write address
rdata 1 32 OUT read data 1
rdata 2 32 OUT read data 2
wdata 32 IN write data

Figure 6: Register file

4.6 Multiplexer

The multiplexer chooses an output from several possible inputs based on the value of the select signal.
In our design, we are using 2-to-1 MUX and 3-to-1 MUX.

Multiplexer Port Description
Port name Port size Port Type Description

s 1 IN select line
a 32 IN data 1
b 32 IN data 2
o 32 OUT selected data
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Figure 7: 2-to-1 MUX

4.7 Sign Extension Unit

The sign extension unit performs sign extension on the 16-bit immediate value provided by the
controller to make it 32-bits wide, so that it can be used in as a second operand in the ALU.

Sign Extender Port Description
Port name Port size Port Type Description

input 16 IN input value
output 32 OUT extended value to 32-bits

Figure 8: Takes in a 16-bit value and extends it to 32-bits.

4.8 Adder

The adder takes 32-bit inputs and adds them together to create an 32-bit sum. This adder supports
signed values.

Adder Port Description
Port name Port size Port Type Description

a 32 IN addend a
b 32 IN addend b
c 32 OUT sum
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Figure 9: A diagram of an adder with two 32-bit inputs and one 32-bit output.

4.9 Shifter

The shifter shifts the input value 2 places to the left where zeros will be shifted in the least significant
bit positions. The size of the input and output are the same.

Shifter Port Description
Port name Port size Port Type Description

a 32 IN input value
o 32 OUT shifted value

Figure 10: A diagram of a shifter that shifts inputs 2 places to the left.

4.10 RAM

The data memory is 512 lines with one word per line. It has a single read/write port. On the rising
edge of the clock, if write enable is 1, it writes data into the input address. If the write enable is 0, it
reads the data from the input address.

RAM Port Description
Port name Port size Port Type Description

clk 1 IN clock signal
we 1 IN write enable

addr 9 IN address
dataI 32 IN input data
dataO 32 OUT output data
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Figure 11: Random Access Memory

5 Synthesis

As with lab 3, we had to make a few changes to our design in order to be able to synthesize our processor.
First, we had to use the std logic unsigned package instead of the numeric std unsigned package in the
ROM, and as a result, had to change occurrences of to integer to conv integer. Also, we had to remove
the preloading mechanism from the ROM, as it would not synthesize. Second, we had to use the
built-in SRAM library, through the provided example, instead of our own design for the data memory.
Additionally, we had to change the name of the clock in the processor from ref clk to clk, and we had
to hardcode some instructions into the instruction memory, because otherwise, the instruction memory
would not be driving any nets.

• Area

– Total area: 81118 square microns

– Area for black box regions: 50667 square microns

– Area for combinational components: 11880 square microns

• Power

– Total power: 21 mW

– Leakage power: 16.2 mW

– Internal power: 4.68 mW

– Switch power: 94 uW

• Maximum Frequency

– Minimum clock period: 2.40 ns

– Maximum frequency: 417 MHz

The maximum frequency of the pipelined processor increased from the maximum frequency of the
single-cycle processor we designed earlier, but only slightly. Our single-cycle processors maximum fre-
quency was 275 MHz. One possible reason why the speed didnt increase more could be due to the way we
decided to split the pipeline architecture. Having a separate entity for each stage may have introduced
some extra overhead into our design, as opposed to having all components instantiated in the processor.
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6 Conclusion

After completing this project, we learned about the various challenges of designing a pipelined proces-
sor. To make life easier for each group member and to make it possible to have multiple members work
on the project, we decided to split the processor so that each stage would reside in a separate entity.
The difficult part of the process was maintaining the processor entity and keeping it up-to-date when
a component interface changed. Also, we decided to use a naming convention and use that convention
consistently throughout all files, in order to make understanding the code easier.

As part of this project, we also learned about the issues arising from allowing multiple instructions
to be in the pipeline at the same time. We learned about some techniques to address those issues:
determining branch outcomes earlier in the pipeline; forwarding the ALU result from the memory and
writeback stages to the decode and execute stages; detecting data hazards not handled by forwarding;
and implementing a mechanism to stall the processor.

By synthesizing the design, we were able to see the performance gain as a result of implementing pipelin-
ing. The performance gain turned out to be moderate for our design, possibly due to the structure of
our implementation. However, with other design decisions, the pipelined processors performance gain
should be substantial.
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