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1 Introduction

For this lab, we built a simple single-cycle MIPS processor using VHDL for the design and System Verilog
for the testbenches. Single-cycle means that an entire instruction will execute in just one cycle. For
the instruction cycle, the processor first fetches and reads an instruction from the instruction memory.
The instruction will be decoded and then executed. Depending on the instruction, it will load or store
to/from the memory. Finally, the result of the execution will be written back to the register file and the
process repeats.

2 Processor

This processor implementation is divided into two major units: the controller and datapath. Our ap-
proach to this design was to break down each of the units into basic functional blocks. We tested each
block with its own testbench to verify that the design was correct and working properly. After testing
each of the blocks, we connected the blocks to create a unit. In this case, the controller is a standalone
unit and the datapath is comprised of many various blocks. There are two blocks that sit outside of the
controller and datapath, the program counter and instruction memory.

In our processor design, the program counter, instruction memory, controller, and datapath are in-
stantiated and linked up. The processor sends a clock signal to the program counter and datapath to
begin instruction. The clock signal defines when a signal can be read or written. The reset signal is used
to bring the components to a initial/normal state. The processor ports are shown below.

Processor Port Description
Port name | Port size | Port Type Description
ref_clk 1 IN clock signal
reset 1 IN reset to normal state

CPU operation types
op Operation Type Comments
000000 | R-type instruction | The funct field will
be sent to the ALU
001XXX | I-type instruction | The controller will
determine the ALU
function code

100011 Load Word ALU operation will
be addi

101011 Store Word ALU operation will
be addi

Others nop ALU function code

will be set to nop

2.1 Design Schematic

This is our design schematic of the processor. The program counter passes an address to the instruc-
tion memory and gets incremented to go to the next address. Usually, an adder would increment the
program counter, but as shown in our design schematic, we did not use an adder block in our case. The
program counter is implicitly incremented. However, we did create an adder block and will probably
use it in upcoming labs. After the program counter passes the address into the instruction memory, the
instruction memory fetches the instruction and sends it into the datapath. The wires on the controller
are labeled to show where they are connected in the diagram.
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Figure 1: Design Schematic of the Processor: Note that the adder is not included as the program counter
is implicity incremented.

2.2 Simulation

To simulate the processor, we created a testbench and an input file ”Lab2Program.txt” using MIPS code
to verify the design. This tests I-type and R-type instructions. For I-type instructions, the following
operations were tested: addi, slti, andi, ori, xori, lw, and sw. For R-type instructions, the following

operations were tested: add, sub, and, nor, xor, or, and slt.

We had previously tested the smaller

components to verify that their design was correct and properly working. Testbenches were created for
the instruction memory, controller, ALU, multiplexer, register file, data memory, and sign extension unit.
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Figure 2: Processor Waveform: Verification that processor was working properly.

2.3 Program Counter

The program counter is a register that contains the addresses of the instructions to be executed. An ad-
dress gets fetched from the program counter and passed to the instruction memory. After the instruction
is fetched, the counter gets incremented to go to the next address. Our implementation of the program
counter, takes in a clock signal and reset. It outputs a 32-bit address.

Program Counter Port Description
Port name | Port size | Port Type Description
clk 1 IN clock signal
rst 1 IN reset bit
output 32 ouT outputs an address
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Figure 3: Program Counter Diagram

2.4 Instruction Memory

The instruction memory for our design is implemented as a ROM (read-only memory). It is preloaded
with instructions provided in the rom.dat file. The address is sent from the program counter as 32-bits,
but the instruction memory will only take the lower 9-bits. This makes our instruction memory size
29 — 1 and each line is 32-bits long. Initially, we set the size to 232 — 1. However, we encountered errors
where QuestaSim and Cadence would not allow an array size greater than 23 — 1. Since we were not
going to use that many registers, we shrunk the size.

Instruction Memory Port Description
Port name | Port size | Port Type Description
addr 9 IN address for the location of instruction
datalO 32 INOUT outputs an instruction
Instruction

addr —~4—> Memory ——~—> datalo

32

Figure 4: The instruction memory has one 9-bit input and one 32-bit output.

The instruction memory is preloaded with instructions and takes an address input. The following
waveforms loads the instructions into the corresponding addresses.



X/ Questa Sim-64 10.4c (WLF View)
File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help

T e B 2P RA|WE-ten B wIABEAS 2TUL T AL
Layout [Similate w| || columnLayout fTTceTama HVD.;.: & @[T I E R i e
Bew wf v B | Search: [T o] ghie || @ Q@ 10 3% || [ LW BT

Gl H A x| |G+ ) X

!\nstance ' @200 ns ¥ »

& rom_tb 9'h014.
U 4 datalo

32'h0000a026
9'h014
32'h0000A026

I E Cursor 1
wavefod/»

200 ns
|

£ Transcript
#//

4 waveform.wlf opened as datasst "waveform'
add wave -r /*

H | x|
VSIM 2>
waveform:/rom_tb 0ns to 68 ns
Figure 5: ROM Waveform: Ons to 70ns
X Questa Sim-64 10.4c (WLF View)
File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help
ERB=&; S BT e Bloere R | aE-tes v olEBEBRES UL tatitan
Layout [similate v || Columnlayoutflieetame v H . 6l. 2 .|| [; ] [N oy L md B || &L e S
Doy wE . B | Search ]7ﬂ g || @ Q@ 8 3% | L LW
G+ x| i H A X Default =
vlinstance | @200 nalar1» _-@—l
=4 rom_tb Jrom_tb/addr 9'h014 i
L JEl © 4 datalo Jrom_tb/datalo  |32'h00002026 220007
Jrom_tb/L1/addr |9'ho14

9. h394b0001 32'had00 0 "COCOUUU 32'h0 68.
'h008 00
‘o jrom_tb/L1/datalO | 32'h0000A026 " [32h392A0007 __ |32'h394B0001 | 32'hAD000000 13 COCOO

1 32'h0! 68

wavefod/»

IE Cursor 1 200 ns
| | |

[
fA Transcript +d x|
# 77
# waveform.wlf opened as dataset "waveform'
add wave -r /*

VSIM 2>
waveform:/rom_tb 69 ns to 137 ns

Figure 6: ROM Waveform: 70ns to 140ns



X/ Questa Sim-64 10.4c (WLF View)
File Edit view Compile Simulate Add Wave Tpols Layout Bookmarks Window Help

B-s@28] -‘,,;wmg\ Help | HEBEBES e Yttt
tayout [simeTare | || Columntayout flieetme ||| c Tl | N L B || &L e
Beu Search: [ v gt || @ @ @ 8% || [L AN BT

G H A x| G 4 B

¥|Instance @ 200 ns ¥ »

=i rom_tb | (I RegELE]Y B4 from_th/addr 9ho14
L JERY © 4 datalo 84 jrom_th/datal0  |32'h0000a026
Jrom_tb/L1/addr |9'ho14
s jrom_tb/L1/datalO [32'h0000A026

wavefod/»

u
£ Transcript
#//

4 waveform.wlf opened as datasst "waveform"
add wave -r /*

[ |
H | x|
VSIM 2>

waveform:/rom_tb

129 ns to 197 ns

Figure 7: ROM Waveform: 130ns to 200ns

X/ Questa Sim-64 10.4c (WLF View)
File Edit view Compile Simulate Add Wave Tpols Layout Bookmarks Window Help

2-3@B28] S BT e e &E|| vE-te= wHAEBEE Rt LR
Layout [simslate w| || columnLayout [FTTcoTams MIEEE I IhGE CETER
Beosfofor | Seach [ v || QQ @807 L LN B

Gl H A x| Qi H A x]

&L
® 200 ns || »

[T wave -Defaut — — Ed
rom_tb 4 addr Jrom_tb/addr 9'h014 014
L 4 datalo from_tb/datalo  |32'h0000a026 h

Jrom_tb/L1/addr |9'ho14
B-“u from_tb/L1/datalO [32'h0000A026

wavefod/»

2 Transcript
+ /7

IE Cursor 1 200 ns
| | |

# waveform.wlf opened as dataset "waveform"
add wave -r /*

[ |
VSIM 2>

waveform:/rom_tb

190 ns to 258 ns.

Figure 8: ROM Waveform: 190ns to 260ns

2.5 Adder

We did not use the adder in our design, but we had already created one. It takes two 32-bit inputs and
adds them together and gets a 32-bit sum. If there is an overflow, the most significant bit is lost.



Adder Port Description
Port name | Port size | Port Type || Description
a 32 IN addend a
b 32 IN addend b
c 32 ouT sum

A 32

Adder

#’ C_sum

B 32

Figure 9: A diagram of an adder with two 32-bit inputs and one 32-bit output.
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Figure 10: Adder waveform generated from a testbench to verify the design.

3 Controller

The controller is one of the most important blocks in ensuring that the processor works correctly, as it
is the part of the processor that decides whether the register file or the data memory should be written
to or not. To ensure that data does not accidentally get overwritten, the controller must be very strict
in the conditions under which it allows the register file or the data memory to be written. For example,
if the instruction is not an R-type, I-type, or load instruction, the register file’s write enable line should
be set to 0, and if the instruction is not a store instruction, the data memory’s write enable line should
be set to 0. The correct selection for the multiplexers is also important, as it could allow the incorrect



value to be written to the register file or data memory. It also determines whether to enable the write
function of the data memory and the register file, and sends the correct function code to the ALU, based
on the instruction.

In our design, the controller determines the correct select value for three multiplexers using the op-
code and funct field of the instruction. First, the multiplexer that selects the address for the second
register in the register file (Rt for I-type and load instructions; Rd for all other instructions). Second, the
multiplexer that chooses the second operand for the ALU (output of register files second read channel for
R-type instructions; sign-extended immediate value for all other instructions). Third, the multiplexer
that chooses the data to write to the register file (output of data memory for load instructions; output
of ALU for all other instructions).

Controller Port Description
Port name | Port size | Port Type Description
Funct 6 IN function
op 6 IN opcode
ALUControl 6 ouT goes to the ALU
ALUSrc 1 ouT goes to the ALU
MemtoReg 1 ouT memory to the register
RegWrite 1 ouT controls register to write
RegDis 1 ouT register
MemWrite 1 ouT write memory
Branch 1 ouT controls branch instruction
—%—> ALUControl
———> ALUSrc
) Controller
Function +’ +’ MemtoReg
6
+’ RegWrite
Opcode + 74> RegDist
6
+’ MemWrite
+) Branch

Figure 11: Diagram of the controller
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Figure 12: Controller Waveform verified through a SystemVerilog testbench.

4 Datapath

The datapath houses the register file, ALU, and data memory, as well as the multiplexers that choose
the address of the register file’s second read port, the ALU’s second operand, and the data to be written
to the register file. It accepts the current instruction, and performs bit slicing to set the correct values
for the following: the address of the the register file’s first read port, the addresses connected to the
multiplexer for the register file’s second read port, and the input of the sign extension unit. The datapath
also sends the opcode and funct fields of the instruction to the controller, and receives the output of the
controller.

11
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Figure 13: Datapath with ALU, 3 multiplexers, RAM, register file, and sign extension unit.

4.1 ALU
ALU Port Description
Port name | Port size | Port Type Description
Func_in 6 IN opcode
Ain 32 IN operand A
B.in 32 IN operand B
O_out 32 ouT output from ALU
Branch_out 1 ouT set to 0, not used
Jump_out 1 ouT set to 0, not used
ALU Function Description
Instruction Description Function Code | Comments
nop nothing ”000000”
add/addi rd « rs + rt / rd < rs + immediate ”100000”
addu/addiu rd < rs + rt / rd < rs + immediate 71000017
sub rd < rs - rt / rd + rs - immediate 71000107
subu rd < rs - rt / rd < rs - immediate 71000117
and/andi | rd « rs AND rt / rd < rs AND immediate 71001007
or/ori rd < rs OR rt / rd < rs OR immediate 71001017
xor/xori | rd < rs XOR rt / rd + rs XOR immediate 7100110”
nor rd < rs XOR rt / rd < rs NOR immediate 71001117
st /slti Set rd if rs < rt / set rd if rs < immediate ”101000” If the condition is
satisfied set else re-
set destination
sltu/sltiu Set rd if rs < rt / set rd if rs < immediate 71010017 If the condition is
satisfied set else re-
set destination
nop nothing others Any other function
code does nothing

12




Function Value

32

Figure 14: The ALU has 3 inputs and one output. There are two 32-bit inputs that act as the operands
and a 6-bit input that lets the ALU know which operation to perform. The result is then sent to the
output.
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# waveform.wlf opened as dataset "waveform"
add wave -r /*
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Figure 19: Operations shown in the waveform:

4.2 Multiplexer

In general, the multiplexer chooses an output from several possible inputs based on the value of the select
signal. Our design uses three 2:1 multiplexers whose select signal inputs come from the controller block:
ci_sel_dt, ci_sel.ri, and ci_sel_am. The ci_sel_dt chooses whether to use rt for R-type instructions or rd
for the lw instruction. The ci_sel_ri chooses from either the register file input or sign immediate input
as the output for source B. The ci_sel_am chooses between the alu result input for R-type instructions
or read data input from data memory for the lw instruction.
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Multiplexer Port Description
Port name | Port size | Port Type Description
1 IN select line
32 IN data 1
32 IN data 2
32 ouT selected data

MUX Output

32

Select line

Figure 20: 2-to-1 MUX
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Figure 21: The waveform tests select line for 0 and 1.

4.3 RAM

The data memory is 512 lines with one word per line. It has a single read/write port. On the rising

edge of the clock, if write enable is 1, it writes data into the input address. If the write enable is 0, it
reads the data from the input address.
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RAM Port Description

Port name | Port size | Port Type || Description
clk 1 IN clock signal
we 1 IN write enable

addr 9 IN address
datal 32 IN input data
dataO 32 ouT output data

Write enable
1
9

Address ﬁ;’

+’32 Data Qutput
Data Input +’
32

Data
Memory

dk

Figure 22: Random Access Memory
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Figure 23: Waveform verifies the RAM design.

4.4 Register File

The register file has 32 registers, each 32 bits wide. There are 2 read ports and one write port. The

read ports are asynchronous and the write port is synchronous. The register file has a synchronous
reset signal and a write enable signal.
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Register Port Description
Port name | Port size | Port Type Description
clk 1 IN clock signal
rst_s 1 IN synchronous reset
we 1 IN write enable
raddr_1 5 IN read address 1
raddr_2 5 IN read address 2
waddr 5 IN write address
rdata_1 32 ouT read data 1
rdata_2 32 ouT read data 2
wdata 32 IN write data

<A§§

+> rdata_1
+> rdata_2

Register File

Figure 24: Register file
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Figure 25: Waveform generated to verify register file design.
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4.5 Sign Extension Unit

The sign extension unit performs sign extension on the 16-bit immediate value to make it 32-bits wide,
so that it can be used in as a second operand in the ALU.

Sign Extender Port Description
Port name | Port size | Port Type Description
input 16 IN input value
output 32 ouT extended value to 32-bits

Input —~“—>|  Sign Extender > Output

16

Figure 26: Takes in a 16-bit value and extends it to 32-bits.
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Figure 27: Waveform for sign extension unit shows values getting extended.

5 Conclusion

When designing a processor, we discovered how difficult it is to combine the components together in
such a way that they are able to work together even though each component was individually tested and
worked well on its own. We encountered problems when linking up the components. For example, the
data memory had a delay of one cycle when loading and storing. To fix the problem, we made the read
port asynchronous. After completing this lab, we have a better understanding of how a basic processor
works. We also gained more insight to each of the functional blocks that make up the processor.
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